Abstract
Uncovering interesting groups in either multidimensional or network spaces has become an essential mechanism for data exploration and understanding. Decision making requires relevant information as well as high-quality on the retrieved conclusions. We presented a comparative study of two compact representations drawn from the same set of data objects by clustering high-dimensional spaces and low-dimensional Barnes-Hut t-stochastic neighbour embeddings. There is no consensus on how the problem should be addressed and how these representations/models should be analysed because of their different notions. We introduced a measure to compare their results and capability to provide insights into the information retrieved. We considered low-dimensional embeddings as a potentially revealing strategy to uncover dynamics possibly not uncovered in big-data spaces. We demonstrated that a non-guided approach can be as revealing as a user-guided approach for data exploration and presented coherent results for good uncertainty modelling capability in terms of fuzziness and densities.
Original language | English |
---|---|
Pages (from-to) | 214-241 |
Number of pages | 28 |
Journal | International Journal of Business Intelligence and Data Mining |
Volume | 19 |
Issue number | 2 |
DOIs | |
State | Published - 2021 |
Keywords
- Bh-sne embeddings
- Cluster fuzziness
- Consistency
- Decision making
- High-dimensional clustering
- Reliable information